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SUMMARY

In this paper, we present a fast parallel solver designed for a system of reaction–convection–di�usion
equations. A typical application is the large-scale computing of air quality models for which the
main solver corresponds to reaction–di�usion–convection equations. Another potential application is the
numerical simulation of population models where several colonies compete. Reaction–di�usion systems
can be integrated in time by pointwise Newton iteration when all space-dependent terms are explicit in
the time integration. A Newton–Jacobi iteration makes this scheme implicit. Such methods are easy to
code and have scalable parallelism. However, they are numerically ine�cient. An alternative method
is to use operator splitting, decoupling the time integration of the reaction from the time integration
of convection–di�usion. However, such methods may not be time accurate thanks to the sti�ness of
the reaction term and are complex to parallelize with good scalability. A second alternative is to use
matrix-free Newton–Krylov methods. These techniques are particularly e�cient provided that a good
parallel preconditioner is customized to the application. The method is then not trivial to implement.
We propose here a new family of fast, easy to code and numerically e�cient reaction–di�usion solvers
based on a �ltering technique that stabilizes the explicit treatment of the di�usion terms. The scheme
is completely explicit with respect to space, and the postprocessing to stabilize time stepping uses a
simple FFT. We demonstrate the potential of this numerical scheme with two examples in air quality
models that usually require the implicit treatment of di�usion terms and have compared our solution to
classical schemes for two nonlinear reaction–di�usion problems. For general reaction–di�usion problems
on tensorial product grids with regular space step, the �ltering process can be applied as a black box
postprocessing procedure. Further, we demonstrate on critical components of the algorithm the high
potential of parallelism of our method on medium-scale parallel computers. Copyright ? 2006 John
Wiley & Sons, Ltd.
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2 F. DUPROS, M. GARBEY AND W. E. FITZGIBBON

1. INTRODUCTION

We consider application with the main solver corresponding to reaction–di�usion–convection
system:

@C
@t
=∇ · (K∇C) + (a · ∇)C + F(t; x; C) (1)

with C ≡ C(x; t)∈Rm; x∈� ⊂ R3; t ¿ 0. A typical example is an air pollution model where
a is the given wind �eld, and F is the reaction term combined with source=sink terms. For
such a model m is usually very large, and the corresponding ODE system

@C
@t
=F(t; x; C) (2)

is sti� [1–4]. A second class of examples is the modelling of cancer tumor growth [5, 6].
Equation (1) can be rewritten as

DC
Dt
=∇ · (K∇C) + F(t; x; C) (3)

where D=Dt represents the total derivative.
For the time integration of reaction–di�usion–convection, one can distinguish three di�erent

time scales. Let us denote dt the time step and h the minimum size of the mesh in all
space directions. Let us assume ‖a‖=O(1) and ‖K‖=O(1). First, the Courant–Friedrichs–
Lewy (CFL) condition imposes dt=O(h) with the explicit treatment of the convective term.
Second, the stability condition for the explicit treatment of the di�usion term gives dt=O(h2).
It is standard for reaction–di�usion–convection solver used in air quality to have a second-
order scheme in space combined to a second-order scheme in time. We have then to look for
an implicit scheme such that dt=O(h). It is critical to make the treatment of the di�usion
term implicit, while it is not so critical for the convective terms. The discretization of the
convective term might be done in a number of ways. We refer to Reference [4] for a review of
these methods. The Ellam scheme is probably one of the best convective schemes [7]. In our
work, we use the method of characteristics that provides a good combination of space–time
accuracy, while it is fairly simple to code [8], straightforward to parallelize and implicit in
time with no global data dependency in space. The third time scale in the reaction–di�usion–
convection equation comes from the reactive source term that is usually sti� in air quality
application, but not so sti� in bio-applications as in References [5, 6] and its references. One
typically applies nonlinear ODE implicit schemes derived from the theory of (2).
The main problem we address in this paper is the design of a fast solver for reaction–

di�usion that has good stability properties with respect to the time step but avoids the
computation of the full Jacobian matrix. One classical scheme of work follows the so-called
matrix-free Newton–Krylov methods. We refer to Reference [9] for a recent review of these
methods. While these techniques can be particularly e�cient, it is encouraged to use them
in the framework of a package like PETSc to adapt the method to the reaction–di�usion
application and optimize each parameter of the method. An alternative is to introduce an
operator splitting that integrates a fast nonlinear ODE solver with an e�cient linear solver
for the di�usion(–convection) operator. However, the sti�ness of the reaction terms induces
some unusual misperformance problems for high-order operator splitting. In fact, the classical
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FILTERING TECHNIQUE FOR SYSTEM OF REACTION–DIFFUSION EQUATIONS 3

splitting of Strang might perform less well than a �rst-order source splitting [10]. As reported
recently [11], second-order splitting can also give spurious solution for reaction–di�usion
systems that are not even particularly sti�.
We explore some alternative methodology in this paper that consists of stabilizing with

a posteriori �ltering, the explicit treatment of the di�usion term. The di�usion term is then
an additional term in the fast ODE solver and the problem is completely parametrized by
space dependency. The coding of the algorithm is particularly simple and requires only a
postprocessing subroutine that relies on an FFT. The mathematical idea of our method was
�rst introduced in Reference [12]. We will show that it can produce an e�cient parallel
algorithm due to the intense pointwise computation dominated by the time integration of
the large system of ODE’s. However, we will not address the issue of load balancing that
is dictated by the integration of the chemistry [2, 13], and therefore application dependent.
The stabilizing technique based on �ltering presented in this paper will be limited to grids
that can be mapped to regular space discretization or grids that can be decomposed into sub-
domains with regular space discretization. We should point out that an alternative and possibly
complementary methodology to our approach is the so-called Tchebyche� acceleration [14, 15]
and its references, that allows so-called super time steps that decompose into appropriate
irregular time stepping.
We will demonstrate the potential of our numerical scheme with two examples in air quality

models that usually require the implicit treatment of di�usion terms, that is local re�nement
in space via domain decomposition to improve accuracy around source points of pollution
or stretched vertical space coordinate to capture better ground e�ect. For general reaction–
di�usion problems on tensorial product grids with regular space step, the �ltering process
can be applied as a black box postprocessing procedure. Further, we demonstrate on critical
components of the algorithm the high potential of parallelism of our method on medium-scale
parallel computers.
The plan of this article is as follows. Section 2 presents the methodology for reaction–

di�usion problem �rst in one space dimension and second its generalization to multidimen-
sional problems along with some evaluation of the method using the benchmark problems in
Reference [11]. Section 3 gives a two-dimensional example of a computation of a simpli�ed
ozone model with local grid re�nement and basic di�usion. Section 4 gives a one-dimensional
example of the same model with vertical irregular di�usion and strongly varying space step.
Section 5 comments on the parallel implementation of the method and discusses the paral-
lel e�ciency following the preliminary results presented in Reference [16]. In Section 6, we
discuss the potential of this method for grid computing and conclude.

2. METHODOLOGY

2.1. Fundamental observations on the stabilization of explicit scheme

In this section, we restrict ourselves to the scalar equation

@tu= @2xu+ f(u); x∈ (0; L); t ∈ (0; T ) (4)

with boundary conditions to be speci�ed later. We assume that the problem is well posed and
has a unique solution.
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4 F. DUPROS, M. GARBEY AND W. E. FITZGIBBON

We will consider the �rst-order semi-implicit Euler scheme:

un+1 − un
dt

=Dxxun + f(un+1) (5)

as well as the following second-order scheme in space and in time:

3un+1 − 4un + un−1
2 dt

=2Dxxun −Dxxun−1 + f(un+1) (6)

that is a combination of backward second-order Euler (BDF) for the time derivative and
second-order extrapolation in time for the di�usion term. We recall that BDF is a standard
scheme used for sti� ODEs [4, 17, 18]. We will also use the following second-order scheme:

un+1 − un
dt

= 3
2 Dxxu

n −Dxxun−1 + 1
2 (f(u

n) + f(un+1)) (7)

that uses the mid-point rule for the time derivative, and second-order extrapolation in time
for the di�usion term.
We restrict ourselves to �nite di�erence discretization with second-order approximation of

the di�usion term. The Fourier transform of (6), for instance, when neglecting the nonlinear
term has the form

3ûn+1 − 4ûn + û n−1
2 dt

=�k(2û
n − û n−1) (8)

where �k =2=h2(cos(hk)− 1). The stability condition for wave number k has the form

2
dt
h2

∣∣∣∣cos
(
k�
N

)
− 1

∣∣∣∣¡ 4
3 (9)

with h=�=N . The maximum time step allowed is then

dt ¡ 1
3 h

2 (10)

However, it is only the high-frequency components of the solution that are responsible for
such a time step constraint, and they are poorly handled by second-order �nite di�erences. We
observe numerically that the relative error on large frequencies for second-order derivatives
of large frequencies waves cos(kx), k ≈N with central di�erences grows up to 9%. Therefore,
the main idea is to apply a �lter that can remove the high frequencies in order to relax the
constraint on the time step while keeping second-order accuracy in space. The main di�-
culty is then to cope with nonperiodic boundary conditions. With arbitrary Dirichlet boundary
conditions, for example, the Fourier expansion of u(:; t) has very bad convergence properties
thanks to the Gibbs phenomenon in the neighbourhood of the end points of the interval (0; L).
We recall that a real and even function �(�) is called a �lter of order p if,

• �(0)=1; �(l)(0)=0; 16l6p− 1,
• �(�)=0 for |�|¿1,
• �(�)∈Cp−1 for �∈ (−∞;∞).
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Let us denote y=(2�=L)x, and v(y)= u(x). If

u(x; t)=
∞∑

k=−∞
v̂k(t)eiky

denotes the Fourier expansion of u(x; t) at time t, then the �ltered function u�N is

u�(x; t)=
∞∑

k=−∞
�

(
k �
N

)
v̂k(t) eiky

and has nonzero Fourier components only for |k|6N=�. The parameter �¿0 will set the level
of cut in frequency space. We will denote T the transform

u T→ u�N

For a general time-integration scheme for (4), one can �lter the solution after each time
step and adjust the frequency cut, i.e. set � such that the von Neumann necessary condition for
stability [19] is satis�ed. We �rst need to show that it is su�cient to ensure the stability of the
scheme, and second that the high-frequency components left out from the Fourier expansion
of the solution at each time step do not a�ect the numerical accuracy of the �nite di�erence
scheme.
We recall the following result [20] that will be useful to address the issue of the accuracy

of our stabilized scheme.

Theorem 1
Let u be a piecewise Cp function with one point of discontinuity, �, and let � be a �lter
of order p. For any point y∈ [0; 2�], let d(y)= min{|y − � + 2k�| : k= − 1; 0; 1}. If u�N =∑∞

k=−∞ûk�(k=N )e
iky,

then

|u(y)− u�N |6CN 1−p(d(y))1−pK(f) + CN 1=2−p‖u(p)‖L2
where

K(f)=
p−1∑
l=0
(d(y))l|u(l)(�+)− u(l)(�−)|

∫ ∞

−∞
|G(p−l)
l (�)| d�

and Gl(�)= �(�)−1
�l .

Thus, a discontinuity of u(x) leads to a Fourier expansion with error O(1) near the disconti-
nuity and O(1=N ) away from the discontinuity.
We �rst present the stabilization of scheme (5) with periodic boundary conditions for the

heat equation

@tu= @2xu+ f(x; t); x∈ (0; L); t ∈ (0; T ) (11)

with periodic boundary conditions

u(0; t)= u(L; t); @xu(0; t)= @xu(L; t); t ∈ (0; T ) (12)

and the initial condition

u(x; 0)= uo(x); x∈ (0; L) (13)
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6 F. DUPROS, M. GARBEY AND W. E. FITZGIBBON

2.2. The periodic case

Let us consider, for simplicity, a one-step scheme that can be written as

un+1h =Q unh + dt f
n
h (14)

where unh is the grid solution at points xj, j=1; : : : ; N , and time t
n. The scheme is stable for

the l2 discrete norm, i� ‖Q‖l2 ; h¡1.
For time steps dt such that ‖Q‖l2 ; h¿1, we are going to �lter out the high-frequency com-

ponents of the solution un+1 that are unstable.
Let P be the matrix of the discrete Fourier transform and P−1 its inverse. Let D� denotes

the diagonal matrix of the transform T .
In Fourier space, the Euler scheme can be written as

ûn+1N = Q̂ ûnN + dtf̂
n
N

For the stability analysis, we can suppose that fnh ≡ 0. Stability in the discrete l2 norm is
equivalent to stability in Fourier space, i.e. ‖Q̂‖l2¡1.
Our stabilized scheme writes

unh
Q→ u∗; n+1

h
P→ ûn+1 D�→ ûn+1 P−1

→ un+1

The �lter D� cuts out all frequencies that do not satisfy the von Neumann criterion of
stability: we have then ‖D�Q̂‖l2¡1. From the identity PQ= Q̂P, we observe that the stabi-
lized scheme corresponds to the operator: Q�=P−1D�Q̂P. Since P is an isomorphism, (i.e.
‖u‖l2 ; h= ‖û‖l2), we have ‖Q�‖l2 ; h¡1.
The explicit Euler stabilized scheme can be written now as

un+1h =Q� unh + dtf
n
h + dt rnh

where rnh is the discrete error added by the �ltering technique at the end of each time step.
This additional consistency error rnh is given by Theorem 1 and depends on the smoothness
of the solution only.
The convergence of the scheme is then straightforward. In particular, for consistency error

rnh brought by the �lter of second or higher order and a �nite di�erence scheme (14) that is
second order, the overall scheme stays second order.

2.3. The Dirichlet boundary condition case

Let us consider �rst a problem with homogeneous Dirichlet boundary conditions. To apply
the �lter transform as de�ned above we construct the periodic extension vn on the real line
of the function un(x) as follows. First, we apply the symmetry:

∀x∈ (0; L); vn(2L− x)= − vn(x)
and second, the periodic extension:

∀x∈ (0; 2L) ∀k ∈Z; vn(x + k2L)= vn(x)

An entirely similar stability analysis to the one above can be done by using the basis of
trigonometric polynomials {sin(k�(x=L)), k=1; : : : ; N}. One uses the matching between the
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sinus expansion of un and the Fourier expansion of vn. We will denote Psin the matrix of the
sinus transform.
Let us suppose that un ∈C2(0; L). The vn is only C1 in the neighbourhood of the end points

x=0 or x=L. Following the result of Theorem 1, the consistency error rn introduced by the
�lter is of order 1=N 2 in the neighbourhood of x=0 and x=L, and of order 1=N 3 away of
this neighbourhood.
Our stabilized scheme writes

unh
Q→ u∗; n+1

h
Psin→ ûn+1 D�→ ûn+1�

P−1
sin→ un+1

where Q is the �nite di�erence scheme with homogeneous Dirichlet boundary conditions, and
Psin is the matrix of the sinus transform.
The transform T removes all unstable sinus waves, i.e. it satis�es

‖D�Q̂‖l2¡1
Then we have, in a way similar to the periodic case, Q�=P−1

sinD�Q̂Psin and ‖Q�‖l2 ; h¡1.
Finally, let us consider the heat equation problem with nonhomogeneous Dirichlet boundary

conditions:

@tu= @2xu+ f(x; t); x∈ (0; L); t ∈ (0; T ); u(0; t)= a(t); u(L; t)= b(t) (15)

with the initial condition (13).
We can transform this nonhomogeneous Dirichlet problem into a homogeneous Dirichlet

problem using a shift. We will denote by S the transform:

u S→ v

In order to guarantee that the shift does not a�ect the stability of the scheme we use a
low-order trigonometric polynomial as follows:

vn(x)= un(x)− (� cos(�x=L) + �) with �= 1
2(u

n(0)− un(L)); �= 1
2(u

n(0) + un(L)) (16)

Then, we extend vn to a 2L periodic function as above. Thanks to the superposition principle,
we can reuse the stability analysis for the problem with homogeneous boundary conditions.
The stabilized scheme writes now

unh
Q→ u∗; n+1

h
S→ v∗; n+1 Psin→ v̂n+1 D�→ v̂n+1�

P−1
sin→ vn+1 S −1

→ un+1

where S is for the shift (16).
Figure 1 gives a graphic illustration of the method. The top left �gure shows the function

un+1 and the corresponding �rst-order trigonometric polynomial used in the S transform.
The top right �gure shows the shifted signal. The bottom left �gure shows the periodic
extension vn+1 of the signal. The right bottom picture shows the truncation error after �ltering.
It illustrates the Gibbs phenomenon located at the end point of the interval. This Gibbs
phenomenon is the main limiting factor to the accuracy of the stabilized method.
Remark: The previous analysis does not apply to inhomogeneous Neumann boundary con-

ditions, for example. As a matter of fact, the Neumann stability criteria is no longer a su�cient
condition.
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Figure 1. Illustration of the method.

2.4. Some remarks on the implementation

In practice we take � to be the following eighth-order �lter [20]:

�(�)=y4(35− 84y + 70y2 − 20y3) where y= 1
2(1 + cos(��)) (17)

The stretching factor �¿1 is chosen to remove all unstable wave components.
For scheme (6), for example, we obtain

�¿�c =
�

a cos
(
1− 2

3

h2

dt

) (18)

Because the function � is not a step function, but rather a smooth decaying function, the
�lter damps signi�cantly some of the high frequencies less than N=�, and it can be suitable
to take �=Cl�c with Cl that is less than 1. One can compute the optimum � for each time
step by monitoring the growth of the highest waves that are not completely �ltered out by
�(�(k=N )).
To run the stabilized algorithm with large time step we need indeed to have � large. A

possible way to preserve the accuracy of the method is then to make the periodic extension
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of the signal un+1 smoother than C1 at the end points. For this purpose, one can use a
trigonometric polynomial that matches the second-order derivative of the time step solution.
To be more speci�c, let us assume that the solution of the parabolic problem at each time

level tn, is in C3(0; �). We de�ne the shift

v(x)= u(x)−
4∑
j=1
�j cos((j − 1)x) (19)

such that the extension of v to a periodic function is in C3(0; 2L). The �rst- and third-order
derivatives of v are zero at the points xk , and the second-order derivative is approximately
given by

uxx(xk)≈ 3u
n+1(xk)− 4un(xk) + un−1(xk)

2�t
− f(un+1(xk)) (20)

The coe�cients �j are found by solving a linear system of equations:

�1 + �2 + �3 + �4 = u(0)

�1 − �2 + �3 − �4 = u(�)
−�2 − 4�3 − 9�4 = uxx(0)
�2 − 4�3 + 9�4 = uxx(�)

This technique does not extend to the two-dimensional space problem, because we do not
retrieve an approximation of the second-order normal derivative from the parabolic equation
as in the one-dimensional case.
An alternative solution is to �lter the discrete time derivative instead of the function un

itself. As a matter of fact un+1 − un is of order dt and we gain automatically the order of
accuracy dt by applying the �lter to a smaller quantity.
For BDF, the S transform writes

vn+1 = un+1 − 4
3 u

n + 1
3 u

n−1 − (� cos(x) + �)
with �= 1

2(w(0) − w(L)), �= 1
2(w(0) + w(L)), and w=3u

n+1 − 4un + un−1. We use the fact
that unstable wave components have been removed from previous time steps as well. This
procedure is completely general and independent of the space dimension.
We have checked on the linear heat equation test case that these di�erent methods perform

according to the linear stability analysis and have accuracy sensitive to the smoothness of the
data of the problem. Our main goal, however, is to use the method to systems of nonlinear
reaction–di�usion equations. We are now going to report on some numerical experience on
nonlinear reaction–di�usion equations with our technique based on the postprocessing of the
time derivative.

2.5. Numerical experiment with nonlinear equation

Following the interesting work of (see Reference [11] and its references), we have compared
our algorithm to a number of classical time-integration schemes. We use the exact same �rst
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10 F. DUPROS, M. GARBEY AND W. E. FITZGIBBON

two benchmark problems of Reference [11], the thermal wave problem

@T
@t
=
@2T
@x2

+ 8T 2(1− T )

and the Brusselator system

@T
@t
=D1

@2T
@x2

+ �− (�+ 1)T + T 2C

@C
@t
=D2

@2C
@x2

+ �T − T 2C

We refer to Reference [11] for the notation and values of the parameters.
First, we have checked that, thanks to the stabilization of all unstable waves following the

Fourier analysis, our scheme is unconditionally stable. The time step can still be limited by
nonlinear instabilities but we have not observed negative values of the unknowns that are
commonly associated with such instabilities. Second, we have compared the accuracy of our
scheme using both stabilized schemes (6) and (7) to �rst-order Euler implicit, second-order
backward Euler (BE), Crank–Nicholson, �rst- and second-order splitting. For the second-order
splitting method we use the Strang splitting with the following order: Reaction–Di�usion–
Reaction (RDR).
For the thermal wave problem, we have computed the error against the exact solution

u(x; t)= 1
2(1− tanh(x − 2t))

The time scale of the problem is

	= h=2

where h is the space step. The solution is computed on the space–time domain (−10; 10)×
(0; 1:024).
In Figure 2, we impose dt= h and look at the convergence of the solution as both parameters

go to zero simultaneously. Figure 2 shows that the stabilized methods based on schemes (6)
and (7) have second-order convergence. However, Crank–Nicolson and the Strang splitting
have better accuracy. In Figure 3 we plot the number of �oating point operations for the
exact same runs. The BE scheme uses a Newton scheme and a conjugate gradient method to
solve the linear system. The matrix of the linear system is preconditioned by the diagonal.
Thanks to the time stepping, this matrix after rescaling is very close to the identity matrix.
The BE scheme is the cheapest scheme of all traditional methods that have been tested here
and requires very few iterative steps for the Krylov method. However, BE is still far more
expensive than both stabilized schemes for N6250. Further, the Splitting method requires one
order of magnitude more �ops than both stabilized schemes. To show that this is independent
of the choice of the linear solver, Figure 3 shows that Strang splitting is more expansive than
the stabilized methods, when one does not even count the number of �ops to solve the linear
system!
In Figure 4, we look at the convergence properties of the scheme with a �xed small space

step, that is h=0:04 and varying time step from dt of order h to dt of order one! One can
verify that the stabilized scheme exhibits second-order convergence for small enough time
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Figure 2. Convergence study for the thermal wave problem, with dt= h.

10-1

105

106

H

flo
ps

Backward Euler 

Stabilized-CN

Flops for Splitting R-D-R
excluding the linear system’ resolution 

Figure 3. Arithmetic complexity for the thermal wave problem, with dt= h.

step and is always stable. The Crank–Nicolson scheme and Strang splitting are more accurate
but more expansive also.
The test case with the Brusselator problem is most interesting. The time scale of the problem

is 	=12. We are interested in computation that can handle few cycles. As pointed out in the
work of Ropp et al. [11], the splitting methods provide peculiar solutions when the time step

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1–29



12 F. DUPROS, M. GARBEY AND W. E. FITZGIBBON

10-1 100 101 10210-5

10-4

10-3

10-2

10-1

dt/tau

L2
 e

rr
or

dt=2*H Splitting R-D-R 

Crank-Nicolson

BDF
Stabilized-BDF 

Stabilized-CN 

Backward Euler 

    Splitting D-R 

  Splitting R-D 

Figure 4. Convergence study for the thermal wave problem, with �xed space step h=0:04.
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Figure 5. Convergence study for the Brusselator problem, with �xed space step h=0:0025.

is not small enough. We have reproduced this result in Figure 5, for T =80, �xed space step
h=0:0025 and varying time steps. Since we are looking at the convergence with respect to the
time step, the referenced solution is obtained by using Strang splitting with a time step twice
smaller as the smallest time step shown in Figure 4, second-order Richardson extrapolation
in time and the same �xed space step h. The error for the Crank–Nicolson and second-order
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splitting of Strang methods exhibit a small plateau as the time step dt get very small that
correspond to the spatial error.
Figure 6 shows the convergence of the numerical scheme with dt= h and both parameters

going to zero. The reference solution is obtained with dt=0:002 and h=5× 10−4, and the
Strang splitting. Crank–Nicolson and the splitting methods gives similar accuracy. The sta-
bilized Crank–Nicolson scheme (7) provides a slightly less accurate solution with much less
�ops.
We will apply this technique to a sti� nonlinear problem corresponding to a simpli�ed air

pollution model in Sections 3 and 4, but �rst let us extend the algorithm to multiple-dimension
problems.

2.6. Generalization to two-space dimensions

For simplicity, we restrict ourselves in this presentation to two space dimensions, but the
present method can be extended to three dimensions in a straightforward way (see Section 5.2).
Let us consider the problem

@tu=�u+ f(u); (x; y)∈ (0; �)2; t¿0 (21)

in two space dimensions with Dirichlet boundary conditions

u(x; 0=�)= g0=�(y); u(0=�; y)= h0=�(x); x; y∈ (0; �)
subject to compatibility conditions:

g0=�(0)= h0(0=�); g0=�(�)= h�(0=�)

Once again, we look at a scheme analogous to (5) with, for example, a �ve-point scheme for
the approximation of the di�usive term. Our extension of the algorithm to a multidimensional

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1–29



14 F. DUPROS, M. GARBEY AND W. E. FITZGIBBON

problem is rather straightforward. The algorithm remains essentially the same, except for the
fact that one needs to construct an appropriate low frequency shift that allows the application
of a �lter to a smooth periodic function in both space directions. One �rst employs a shift to
obtain homogeneous boundary conditions in x direction

v(x; y)= u(x; y)− (� cos(x) + �) (22)

with

�(y)= 1
2(g0 − g�); �(y)= 1

2(g0 + g�)

and then an additional shift in y direction as follows:

w(x; y)= v(x; y)− (
 cos(y) + �) (23)

with


(x)= 1
2(v(x; 0)− v(x; �)); �(x)= 1

2(v(x; 0) + v(x; �))

In order to guarantee that none of the possibly unstable high frequencies will appear in the
reconstruction step:

u(x)=�Nw(x) + � cos(x) + �+ 
 cos(y) + � (24)

high-frequency components of the boundary conditions g must be �ltered out with the proce-
dure described in Section 2.3.
We will present in the next section a domain decomposition motivated by mesh re�nement

around a point source. Let us mention that for the convective term, we have used either
explicit second-order one-side �nite di�erences for the convective terms or the method of
characteristic that is a priori implicit and can be made second-order (see Reference [8] and
its references).

3. ADAPTIVE DOMAIN DECOMPOSITION TO TREAT A LOCALIZED SOURCE
IN AIR POLLUTION

We are now going to apply our �ltering technique to a simpli�ed air pollution model. We
will restrict our attention to situations where di�usion terms usually require an implicit solver
in space. The �rst example will be brought by local re�nement con�guration when one wants
to capture accurately a localized source term such as a chimney. As a simple illustration,
we consider the following reactions, which constitute a basic air pollution model taken from
Reference [4]:

NO2 + h� −→k1 NO +O(3P)

O(3P) +O2 −→k2 O3

NO +O3 −→k3 O2 + NO2
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We set c1 = [O(3P)], c2 = [NO], c3 = [NO2], c4 = [O3]. One begins by considering the fol-
lowing corresponding ODE system:

dc1
dt
= k1c3 − k2c1

dc2
dt
= k1c3 − k3c2c4 + s2

dc3
dt
= k3c2c4 − k1c3

dc4
dt
= k2c1 − k3c2c4

We write the system as

dc
dt
=F(c; t)

with initial condition

c(t=0)= [0; 13× 107; 5× 1011; 8× 1011]t (25)

The chemical parameter values are

s2 = 106; k3 = 10−16; k2 = 105

k1 is time dependent. At night k1 = 10−40. During the day

k1 = 10−5 exp
(
7

(
sin

( �
16
(th − 4)

))0:2)
(26)

for

th ∈ (4; 20)
with

th= t=3600− 24[t=3600=24]
It can be shown that this problem is well posed, and that the vector function c(t) is continu-
ous [21]. At transition between day and night the discontinuity of k1(t) brings a discontinuity
of the time derivative dc=dt. This singularity is typical of air pollution problems. Nevertheless,
this test case can be computed with second BE (BDF) and constant time step for about four
days, more precisely t ∈ (0; 3× 105) with dt¡1200. Larger time steps lead to too inaccurate
solution. We use a Newton scheme to solve the nonlinear set of equations provided by BDF
at each time step. The norm of the Jacobian of the system is of order 108.
We recall that for air pollution, we look for numerically e�cient schemes that deliver a

solution with a 1% error.
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Second, we introduce in the previous model spatial di�usion e�ect.

@C
@t
=�C + F(C; x; y; t); (x; y)∈ (−L; L)2 (27)

with homogeneous Newmann boundary conditions.
We take a source term S(x; y) that exhibits a sharp peak at the centre (x; y)= (0; 0) of the

domain:

S(x; y)= s2 exp(−40(x2 + y2)=L2)
with L=400. Let G be a regular grid of constant space h1 in every direction of �. In order
to capture accurately the source term, we decompose � into two overlapping subdomains �1
and �2 = (−L=q; L=q)2, of approximately the same number of grid points. In particular, the
space grid G2 of �2 is embedded in G with a re�nement factor q=2k , k ∈� ⊂ N. G1 denotes
the grid G restricted to �1. The thickness of the overlap between �1 and �2 is of order h1.
We use the same semi-implicit BDF scheme

3Cn+1k − 4Cnk + C n−1
k

2 dt
=2�hCnk −�hC n−1

k + F(Cn+1k ); k=1; 2 (28)

�h is for the classical �ve-point approximation of the Laplacian, i.e.

∀k ∈ {1; 2} : �hCk(x; y)
=
Ck(x + h; y) + Ck(x − h; y) + Ck(x; y + h) + Ck(x; y − h)− 4Ck(x; y)

h2

Let us denote dt0 = h21=6, the maximum time step allowed with the explicit treatment of the
di�usion term in �1.
In principle the explicit time stepping with respect to di�usion should lower the time step to

dt=dt0=q2! Our �ltering technique allows us to use the same time step in �1 and �2. We apply
the method described in Section 2.6 to the solution in �2. The implementation is therefore
extremely simple. We let Cn+11 , (respectively, Cn+12 ) be the solution in �1, (respectively, �2)
obtained at time step tn+1.
Then we assemble the global solution on the composite grids G1 ∪ G2 using a cut-o�

function H, so-called partition of unity. H(x; y) has to be a smooth bounded function with
values between 0 and 1, such that

H(x; y) = 1 for (x; y)∈�\�2
H(x; y) = 0 for (x; y)∈�2\�1

At each time step tn, we assemble the solution on the composite grids to be

Cn+11 :=H · Cn+11 + (1−H)P(Cn+12 )

Cn+12 :=H · I(Cn+11 ) + (1−H) · Cn+12
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Figure 7. Solution C=(C1; C2; C3; C4), at �nal time t=3× 105 on grid G1.

where P denotes the projection of G2 into G1, and I denotes the spline interpolation from G1
to G2.
We have implemented this domain decomposition on problem (27) for t ∈ (0; 105) with

constant state initial condition (25). The time step is the maximum time step allowed by the
explicit treatment of the di�usion term in �1. The re�nement factor in the internal subdomain
�2 is 4, and therefore the time step is 16 times larger than the explicit treatment of the
di�usion term in �2 should allow. The cut-o� function H reemploys the eighth-order �lter
pro�le (17) with a large �. The number of grid points in G and G2 is 25 in each directions.
Figures 7–9 show the result of this computation with FUcos1 method. We have checked that
the main error comes from the integration of the ODE system at each grid point. We have
an accurate resolution of the peak at the centre points thanks to the local re�nement. The
composite solution remains smooth and the time stepping is stable even if the thickness of
the overlap is as low as 2h1.
Finally, we observe that our algorithmic solution does not require any operator splitting

and is obviously rather inexpensive in terms of arithmetic complexity.

4. APPLICATION TO VERTICAL TRANSPORT IN AIR POLLUTION

Our second example will be related to vertical transport of pollutant induced by gravity [1, 3].
In this case the di�usion coe�cient is space dependent, and the source term is located near
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Figure 8. Solution C=(C1; C2; C3; C4), at �nal time t=3× 105 on the �ne grid G2.

the surface, so one must use adaptive mesh with �ne space step near the ground. In such
a situation, one usually uses an implicit solver in space to treat the di�usion term [1]. In
this section we use our �ltering methodology, which can work properly on reaction–di�usion
systems with stretched space grid, space-dependent di�usion coe�cient, and Robin boundary
conditions.
Let us consider the simpli�ed ozone model of Reference [4] adding some vertical di�usion

e�ect:

@C
@t
=
@
@z

(
K
@C
@z

)
+ F(C; t); z ∈ (0; L) (29)

with boundary conditions,

−K @C
@z|z=0

=E − � · C; @C
@z|z=L

=0 (30)

We take K(z) to be a function having the same structure as in Reference [1]. Figure 10 gives
a graphic representation of K(z). More precisely, below the height of the base of a given
lowest strong inversion layer denoted Li, we have

K(z)=
d1(z + d0)

0:74 + 4:7
z
Li

; z ∈ (0; Li)
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Above Li, we take K(z), z ∈ (Li; L) to be a sharp decreasing hyperbolic tangent pro�le
a tanh(−[(z − Lu)=�]) + b decreasing from ‖K‖∞ to K0 = 0:05‖K‖∞. We require that K(z)
be a continuous function with a derivative having a jump at z=Li. E models the emission
of C at surface level, � is for the dry deposition.
The source term in C2 equation is written

S(z)= s2 exp(−Csz2=L2)

In the numerical experiment reported in this paper, we take: d0 = 10, d1=0:03, Li=400,
Lu=1000, �=100, Cs=5, L=3870, E=(0; 0:1; 0; 0)t, �=(0; 0; 0; 0:01). All physical param-
eters in this experiment are somehow arti�cial. Nevertheless, we believe that this test case is
representative of the di�culties of the numerics. The mapping used to de�ne the space grid
is smooth and based on an hyperbolic tangent function. The solution, cf. Figures 10 and 11,
was obtained with time step dt=651. We have checked that this time step is 8 times larger
than the maximum time step allowed with no �ltering. Further, the di�erence between this
numerical solution (see Figure 10), and the explicit solution with no �ltering at t=105 is of
the order 1%.
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We now are going to describe some critical elements of the parallel implementation of our
method for multidimensional air pollution problems.

5. ON THE STRUCTURE AND PERFORMANCE OF THE PARALLEL ALGORITHM

For simplicity, we will �rst restrict our system of reaction–di�usion equations to two space
dimensions. A performance analysis for the general case with three space dimensions will
then follow.

5.1. Two-dimensional case

The code must process a three-dimensional array U (1 :Nc; 1 :Nx; 1 :Ny) where the �rst index
corresponds to the chemical species, and the second and third correspond to space dependency.
The method that we have presented in Section 2 can be decomposed into two steps:
Step 1: Evaluation of a formula

U (:; i; j) := G(U (:; i; j); U (:; i + 1; j); U (:; i − 1; j); U (:; i; j + 1); U (:; i; j − 1)) (31)

at each grid point provided appropriate boundary conditions.
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Figure 11. Solution C=(C1; C2; C3; C4), at �nal time t=105.

Step 2: Shifted �ltering of U (:; i; j) with respect to i and j directions.

Step 1 corresponds to the semi-explicit time marching (28) and is basically parametrized
by space variables. In addition, the data dependencies with respect to i and j correspond to
the classical �ve-point graph common in second-order central �nite di�erences. The parallel
implementation of Step 1 is straightforward: one decomposes the array U (:; 1 :Nx; 1 :Ny)
into subblocks distributed on a two-dimensional Cartesian grid of px×py processors with
an overlap of at most one row and column in each direction. Parallel performance of this
algorithm is well known. If the load per processor is high enough (which is likely the case with
the pointwise integration of the chemistry) this algorithm scales very well (see for example
Reference [22]).
For the reaction–convection–di�usion solvers used in air pollution [4], it is most common

to use one-side second-order �nite di�erences formula for the convection terms in order to
deal with sharp gradient of the velocity �eld. Rather than the �ve-point formula (31), one
computes

U (:; i; j) :=G(U (:; i; j); U (:; i + 1; j); U (:; i − 1; j); U (:; i; j + 1); U (:; i; j − 1);
U (: i ± 2; j)U (:; i; j ± 2)) (32)
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and the stencil depends locally on the orientation of the transport vector �eld a. The data
distribution of U (:; i; j) requires then an overlap of at most two rows and columns in each
direction.
The parallel e�ciency of the implementation can still be high even for the BDF scheme

applied to the linearized problem, provided that the network of the parallel computer is good
enough. We refer to Tables I–III that report on performance with a Cray T3E with varying
number of equations Nc. To obtain a lower estimate of the parallel e�ciency of step one, we
have skipped the integration of the chemistry in the runs. Nevertheless, we observe that the
e�ciency of the runs with 64 processors, growths with the number of species Nc. From these
tables, it can be seen that at �xed number of processors px×py, it is best for Nc = 1 and 4,
to maximize py and take px=1. This dissymetry in performance with respect to px and py,
is due to the fact that arrays in Fortran are stored by column.
The data structure is imposed by Step 1 and we will proceed with the analysis of the

parallel implementation of Step 2.
Step 2 introduces global data dependencies across i and j. It is therefore more di�cult

to parallelize the �ltering algorithm. The kernel of this algorithm is to construct the

Table I. E�ciency on a Cray T3E with Nc = 1, Nx=Ny=128.

px×py proc. py=1 py=2 py=4 py=8 py=16

px=1 100.00 97.5 90.8 93.0 93.8
px=2 91.7 87.2 88.8 94.5 85.0
px=4 80.8 84.9 89.6 80.5 56.1
px=8 77.2 86.3 77.7 57.4
px=16 75.8 73.3 54.4

Table II. E�ciency on a Cray T3E with Nc = 4, Nx=Ny=128.

px×py proc. py=1 py=2 py=4 py=8 py=16

px=1 100.00 101.3 97.9 94.3 79.5
px=2 102.5 97.2 89.6 83.4 80.2
px=4 92.6 87.8 82.6 80.0 77.8
px=8 80.6 75.2 76.2 79.7
px=16 62.9 63.9 70.2

Table III. E�ciency on a Cray T3E with Nc = 20, Nx=Ny=128.

px×py proc. py=1 py=2 py=4 py=8 py=16

px=1 100.00 95.4 92.7 88.4 78.9
px=2 110.0 102.6 96.9 89.9 84.6
px=4 107.3 96.2 94.1 94.0 78.3
px=8 94.7 89.6 92.0 82.4
px=16 75.6 76.5 73.3
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two-dimensional sine expansion of U (:; i; j) modulo a shift, and its inverse. One may use
an o� the shelf parallel FFT library that supports two-dimension distribution of matrices
(e.g. http:==www.�tw.org). In principle the arithmetic complexity of this algorithm is of order
Nc N 2 log(N ) if Nx∼N , Ny∼N . It is well known that the ine�ciency of the parallel imple-
mentation of the FFTs comes from the global transpose of U (:; i; j) across the two-dimensional
network of processors. Although for air pollution problems on medium-scale parallel com-
puters, we do not expect to have Nx and Ny much larger than 100 because of the intense
pointwise computation induced by the chemistry. An alternative approach to FFTs that can
use fully the vector data structure of U (:; i; j; ) is to write Step 2 in matrix multiply form:

∀k=1 :: Nc; U (k; :; :) := A−1
x; sin × (Fx · Ax; sin)U (k; :; :)(Aty; sin · Fy)×A−t

y; sin (33)

where Ax; sin (respectively, Ay; sin) is the matrix corresponding to the sine expansion transform
in x direction and Fx (respectively, Fy) is the matrix corresponding to the �ltering process.
In (33), · denotes the multiplication of matrices component by component. Let us de�ne
Aleft =A−1

x; sin × (Fx ·Ax; sin) and Aright = (Aty; sin ·Fy)×A−t
y; sin. These two matrices Aleft and Aright can

be computed once for all and stored in the local memory of each processor. Since U (:; i; j) is
distributed on a two-dimensional network of processors, one can use an approach very similar
to the systolic algorithm [23] to realize in parallel the matrix multiply AleftU (k; :; :)Aright for all
k=1; : : : ; Nc. Let px ×py be the size of the two-dimensional grid of processors. The �rst one
does py−1 shifts of every subblock of U (k; :; :) in y direction assuming periodicity in order to
construct ∀k; V (k; :; :)=AleftU (k; :; :). The second one does px−1 shifts of every subblocks of
V (k; :; :) in x direction assuming periodicity in order to construct ∀k; U (k; :; :)=V (k; :; :)Aright.
If one assumes a linear communication cost model with latency 	 and cost per word tw, then
the communication cost is of order:

(py − 1)
(
	+ tw

N 2

pxpy

)
+ (px − 1)

(
	+ tw

N 2

pxpy

)

One can easily use nonblocking communication in the implementation, in order to overlap
the communication by the computation. Basically the time necessary to move the data in x
and then y direction is negligible in comparison with the time spent in the matrix multiply.
Further, we observe that the matrices can be approximated by sparses matrices, if one

neglects the matrix coe�cients less than some small tolerance number tol. This comes from the
fact that in the limit case, �=0, Aleft and Aright are the identity. The number of ‘nonneglectable’
coe�cients then grows with �. We did check that the time accuracy is then no larger than
O(tol) for small tolerance number. Figure 12 gives the elapsed time on an EV6 processor at
500MHz obtained for the �ltering procedure for various problem sizes, �=2, and using or
not the fact that the matrices Aleft and Aright can be approximated by sparse matrices. However,
the use of optimum basic linear algebra subroutines customized to the processor can make
the use of the approximated sparse structure unnecessary and possibly ine�cient. This method
should be competitive to a �ltering process using FFT for large Nc and not so large Nx and
Ny. But the parallel e�ciency of the algorithm as opposed to FFT on such small data sets is
very high (see Tables IV–VI).
For Nc = 1; 4, we bene�t once again from the cache memory e�ect, and obtain perfect

speedup with up to 32 processors. For larger numbers of species, Nc = 20 for example, we
observe a deterioration of performance, and we should introduce a second level of parallelism
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for Nx=Ny=64, ‘x’ for Nx=Ny=32 and tol = 1−5.

Table IV. E�ciency on a Cray T3E with Nc = 1, Nx=Ny=128.

px×py proc. py=1 py=2 py=4 py=8 py=16

px=1 100.00 98.4 93.0 86.2 70.3
px=2 268.1 256.7 228.9 187.8 112.5
px=4 244.5 230.1 191.8 128.8 54.9
px=8 215.1 185.4 127.6 60.3
px=16 180.6 118.8 60.0

Table V. E�ciency on a Cray T3E with Nc = 4, Nx=Ny=128.

px×py proc. py=1 py=2 py=4 py=8 py=16

px=1 100.00 98.0 90.9 84.2 70.0
px=2 171.3 166.2 149.0 127.8 93.2
px=4 158.1 151.9 130.1 100.0 60.4
px=8 140.8 128.7 102.7 61.8
px=16 114.6 96.0 61.3

with domain decomposition to lower the dimension of each subproblem and get a data set
that �ts in the cache.
Let us now discuss the results for a three-dimensional problem in space.
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Table VI. E�ciency on a Cray T3E with Nc = 20, Nx=Ny=128.

px×py proc. py=1 py=2 py=4 py=8 py=16

px=1 100.00 97.3 88.1 79.9 66.2
px=2 120.2 117.0 103.4 91.7 73.1
px=4 110.9 106.6 94.8 81.7 60.5
px=8 99.9 96.5 83.0 66.1
px=16 83.7 78.0 61.4

Figure 13. Horizontal slice of the source term.

5.2. Three-dimensional case

The problem writes,

@C
@t
=�C + F(C; x; y; z; t); (x; y)∈ (−L; L)2; (z)∈ (0; h) (34)

with

�C= @2xC + @
2
yC +

@
@z

(
K
@C
@z

)
(35)

where K has been de�ned in Section 4. To have strong dependency on space of the solution,
we take a source term S(x; y; z) that exhibits two sharp peaks and one sink in the horizontal
(x; y) direction and vanishes exponentially in the vertical direction (see Figure 13). The mesh
is re�ned in the neighbourhood of the ground, (i.e. z=0), as in Section 4. The parallel
e�ciency of the �lter with a Cray T3E is given in Table VII, and we observe slightly better
performances for the heat equation code.
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Table VII. Parallel E�ciency of the �lter based on
matrix multiply with Nc = 4, Nx=Ny=64, Nz=32.

px×py proc. py=1 py=2 py=4

px=1 100.00 70.6 50.4
px=2 71.3 62.8 72.9
px=4 50.2 71.7 65.1
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Figure 14. Scalability performance for the Ozone case on a Cray T3E with 450MHz alpha processors.
The latency of the network is 12 �s and the bandwidth 320MB=s. Each processor has 16× 16×Nz grid

points with Nz =16 for the ‘o’ curve, respectively, Nz =32 for the ‘v’ curve.

The reason this parallel e�ciency is lower than in the two-dimensional case, is that the
ratio of �ops per communication is less advantageous. The ratio of unknowns in the vertical
pencil of data owned by each processor per number of unknowns on the boundary is N 3=2

when it was N 2 in the two-dimensional case. Nevertheless, we do have excellent parallel
scalability of our parallel algorithm considering the fact that we can keep dt of order the
space step with our �ltering method. Figures 14 and 15 give the elapsed time on, respectively,
a Cray T3E and a Compacq cluster of four EV6 four processors alpha servers connected by a
quadrix switch. The number of grid points on each processor is Nx ×Ny ×Nz. It is �xed in the
two-dimensional partitioning no matter the number of processors. In these runs, Nx=Ny=16
and Nc = 4. The global size of the problem processed in parallel is px Nx ×pyNy ×Nz×Nc,
with the two-dimensional grid of processors px ×py. The only part of the algorithm that
has nonlinear arithmetic complexity is the �lter, (i.e. the matrix–matrix vector product (33)).
With Nz=16, the elapsed time spent in the �ltering procedure grows from 10 to 28% of the
total elapsed time while the number of processors grows from one to sixteen on the Compacq
cluster. This growth rate is much less than linear, as it can be seen also on Figures 14 and 15.
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Figure 15. Scalability performance for the Ozone case on a Compacq cluster of 4 EV67=677 alpha
processors linked by a Quadrix switch. Each processor has 16× 16× Nz grid points with Nz = 16 for

the ‘o’ curve, respectively, Nz = 32 for the ‘v’ curve.

Considering the fact that we have a stabilized semi-implicit scheme that can run at time step
comparable to a fully implicit scheme, this result is better than just scalability.
However, this conclusion on good scalability is valid only when the concentration of the

chemical species in space is smooth enough to allow the shifted Fourier expansion used
in �ltering to converge faster than second order. This is obviously very much application
dependent and not necessarily trivial for air quality problems.

6. CONCLUSION

In this paper, we have introduced a new family of fast and numerically e�cient reaction–
convection–di�usion solvers based on a �ltering technique that stabilizes the explicit treatment
of the di�usion terms. We have demonstrated the potential of this numerical scheme with
two examples in air quality models that usually requires the implicit treatment of di�usion
terms. Further, we have shown that our solver has a high level of parallel e�ciency for two-
dimensional problems and excellent parallel scalability in three dimensions. Thanks to the
high-order convergence of Fourier expansion, we can eventually have linear scalability, if the
solution is smooth enough in space and the chemistry complex enough. As a matter of fact,
one can �lter out a larger proportion of high frequencies when the size of the problem grows.
We are now looking at large-scale computation with our new solver, for meta-computing

architecture and possibly applications to the grid. In order to obtain scalable performance of
our solver on large distributed parallel systems with O(1000) processors, one must introduce
a second level of parallelism with for example, the overlapping domain decomposition algo-
rithm described in Reference [12]. This is an essential feature of our new method, because
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at this second level of parallelism we get only local communication between subdomains
with high load of parallel computation per subdomain. This is the best situation to obtain
e�cient parallelism on meta-computing architectures as demonstrated in References [24, 25].
We have recently run large-scale meta-computing experiments with standard Ethernet con-
nections that, thanks to the overlapping domain decomposition scale, are compatible with the
high latency and low bandwidth of the grid Reference [26]: the loss in e�ciency due to
the Ethernet network links is of the order of few per cents. However, the quotidian use of
the grid is very challenging, because fault tolerance and load balancing will need to be
addressed rigorously [27, 28].
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